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A new time-domain approach for computing flutter speed is presented. Based on the time-

history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated 

using a system identification technique. The full aeroelastic model is generated via coupling the 

estimated unsteady aerodynamic model with the known linear structure model. The critical 

dynamic pressure is computed and used in the subsequent simulation until the convergence of the 

critical dynamic pressure is achieved. The proposed method is applied to a benchmark 

cantilevered rectangular wing. 

Nomenclature 

A, B = state-space matrices for structural system 

Aa, Ba, Ca, Da = state-space matrices for aerodynamics system  

C = damping matrix  

CFD = computational fluid dynamics 

cg = center of gravity 

DOF = degrees of freedom 

dt = time step 

FE =  finite element  

FEM =  finite element method 

f = frequency, Hz 

g = structural damping 

K = stiffness matrix 

M = mass matrix 

MIMO =  multi-input multi-output 

N = orthonormalized aerodynamic force vector 

n = number of mode 

n4sid = a MATLAB® (The MathWorks, Inc., Natick, Massachussetts) subspace system identification algorithm 

PSD =  power spectral density 

Q = generalized aerodynamic force vector 

q = generalized displacement vector 

qD = dynamic pressure 

𝑟, 𝑠 = real and imaginary part of the eigenvalue 

SOCIT  = System/Observer/Controller Identification Toolbox 

s = Laplace operator 

X = state vector 

 = damping in the continuous time domain

𝚪 = time integration of a state transition matrix 

 = orthonormalized displacement vector  

 = 𝚪 B 

 = eigenvalues of the aeroelastic system 

 = state-difference variable 

 = state-difference variable
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 = eigenmatrix (mode shapes) 

𝚿 = state transition matrix 

 = undamp natural frequency 

d = damp natural frequency 

I. Introduction 

o reduce the time and expense spent on the design and analysis of an aircraft, it has been desirable to decrease the 

amount of wind-tunnel flutter test by utilizing numerical simulations. Various computational fluid dynamics (CFD) 

codes such as CAP-TSDv1, CFL3D2, and FUN3D3 have been developed for this purpose.  

The classical method of determining the flutter speed from CFD results is a tedius process. The process requires the 

user to run numerous time-consuming CFD simulations while varying the dynamic pressure until the critical dynamic 

pressure is approximately determined by using a trial-and-error process. Varius efforts to identify the flutter boundaries 

directly from the aeroelastic response4, 5 have been made based on system identification technique. The least-squares curve 

fitting method described in Ref. 4 required a large number of sampling points in order to produce reasonable results, and 

this method assumes that an aeroelastic system was linear within the time range of curve fitting. This fitting technique is 

basically based on a nonlinear least-squares method because of the sine, cosine, and exponential functions to be used. This 

approach worked well only with good initial system damping and frequency values. On the other hand, the time-domain 

flutter analysis technique described in Ref. 5 was numerically efficient and piecewise linear assumptions were used. Both 

structural and unsteady aerodynamic systems were assumed to be unknown systems, and therefore a system identification 

technique based on a single-input single-output parameter estimation together with an Autoregressive Moving Average 

(ARMA) model was applied to the time histories of aeroelastic responses. System damping and frequency values can be 

obtained from CFD results, however, this approach can not provide a guideline about the dynamic pressure for future CFD 

computations. 

This paper presents a flutter analysis technique for time-domain unsteady computational aeroelasticity. The technique 

uses an iterative approach to determine the critical dynamic pressure for a given Mach number. The model of the full 

aeroelastic system is created by coupling the estimated unsteady aerodynamic model with the known linear structural 

dynamic model. The multi-input-multi-output (MIMO) model of the nonlinear aerodynamics is created utilizing system 

identification techniques. Updated unsteady aerodynamic models are estimated at every iteration. The critical dynamic 

pressure is determined based on the full aeroelastic model and is used in the subsequent CFD simulation until convergence 

is achieved. The critical dynamic pressure is computed based on the 𝑞𝐷 − g (dynamic pressure versus damping) and  

𝑞𝐷 − 𝑓 (dynamic pressure versus frequency) plots. The major benefit of using the current approach is that the classical 

𝑞𝐷 − g and 𝑞𝐷 − 𝑓 plots for the frequency-domain flutter analysis technique can be used with time-domain aeroelasticity 

data. The critical dynamic pressure value computed in the current iteration can be a good candidate dynamic pressure for 

the next CFD simulation. A cantilevered rectangular wing6 is used as the test case for the method presented. 

II. Method and Tools 

The following section describes the method and tools used in the process of applying the system identification 

technique and computing flutter speeds. The structural system is linear and the structural dynamic model is known. 

A. Interpolation between Structural Dynamic and Unsteady Aerodynamic Models 

The computational aeroelastic code utilized in this study is the CFL3D v.6 code, developed at the NASA Langley 

Research Center (LaRC) (Hampton, Virginia). The aeroelastic capability, including the automated grid deformation 

scheme of CFL3D v.6, utilizes either single-grid or point-to-point matching multiblock structured grid. The structural 

dynamic model and the modal analysis results are considered known prior to CFD simulation. The computational grids 

typically do not match due to resolution difference between the structural dynamic and unsteady aerodynamic models. The 

structural mode shapes on the surface grids of the CFD model are computed using the following simple procedure instead 

of using the Harder and Desmarais surface-spline technique7 which has the well-known numerical problem associated with 

the selection of the proper splining points. 

 

1) Include surface grids of the CFD model in the structural finite element (FE) model. Connect these surface CFD 

grids to the nearest structural finite element method (FEM) grids (four for quadrilateral and three for triangular 

elements) using an interpolation constraint element8 (RBE3 element in MSC/Nastran™ (MSC Software 

Corporation, Newport Beach, California)9 terminology) as shown in Fig. 1. In this figure, motion of CFD grids are 

dependent on the FEM grids. Therefore, neither the stiffness nor the mass properties of the FE model are affected 

by the CFD grids. 

T 
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2) Perform modal analysis. Structural mode shapes are displayed using deflections at FEM grids. On the other hand, 

mode shapes based on CFD grids are the structural mode shapes on the aerodynamic model to be used for CFD 

computations. 

B. Generation of Estimated Unsteady Aerodynamic Model 

The unknown unsteady aerodynamic model is created using a system identification technique. The process is: 

 

1) Perfom static CFD computation with rigid structure. 

2) Create surface CFD grids, and connect these grids to the FEM grids using interpolation elements. Perform modal 

analysis using the structural FE model; then mode shapes on the surface CFD grids will be obtained. 

3) Perform steady CFD computation with flexible structure (mode shapes on the surface CFD grids). 

4) Perform unsteady CFD computation with flexible structure using initial velocity conditions. 

5) Obatin time histories of the orthonormalized aerodynamic force and displacement from the unsteady CFD run. 

6) Generate the MIMO state-space model using a system identification tool such as System/Observer/Controller 

Identification Toolbox (SOCIT)10 or n4sid (The MathWorks, Inc., Natick, Massachussetts)11. 

C. Proposed CFD-based Aeroelastic Analysis Technique 

The proposed time-domain technique utilizes the coupled model of the estimated unsteady aerodynamic model and the 

linear structure model to compute the critical dynamic pressure. State-space difference and measurement equations for an 

unknown aerodynamic system in the discrete time-domain can be estimated using a system identification tool and be 

written as shown in Eq. (1) 

 

𝑿𝑘+1 = 𝐀𝑎𝑿𝑘 + 𝐁𝑎𝜼𝑘 (1) 

and Eq. (2) 

𝑵𝑘 = 𝑞𝐷𝐂𝑎𝑿𝑘 + 𝑞𝐷𝐃𝑎𝜼𝑘    (2) 

 

where, 𝜼𝑘  and 𝑵𝑘 are orthonormalized displacement and aerodynamic force vectors at discrete time k, respectively. 

 

Consider the following structural dynamic differential equations of motion in matrix form, as shown in Eq. (3). 

 

𝐌�̈� + 𝐂�̇� + 𝐊𝒒 = 𝑸. (3) 

 

The generalized displacement vector 𝒒 can be defined as shown in Eq. (4) 

 

𝒒 ≡ 𝜱𝜼 (4) 

 

where, 𝜱 and 𝜼 are an eigenmatrix and a orthonormalized displacement vector, respectively.  Substituting Eq. (4) into 

Eq.(3) gives Eq. (5). 

 

𝐌𝜱�̈� + 𝐂𝜱�̇� + 𝐊𝜱𝜼 = 𝑸 (5) 

 

Pre-multiplying 𝜱𝑇  to Eq.(5) gives Eq. (6) 

 

�̈� + 𝟐𝛇𝛚�̇� + 𝛚𝟐𝜼 = 𝑵 (6) 

 

where 𝜱𝑇𝐌𝜱 = 𝑰, 𝜱𝑇𝐊𝜱 = 𝛚𝟐, 𝜱𝑇𝐂𝜱 = 𝟐𝛇𝛚, and 𝑵 = 𝜱𝑇𝑸 . 

 

Then Eq.(6) can be converted to the state-differential equation shown as Eq. (7) 

 

{
�̇�
�̈�

} = 𝑨 {
𝜼
�̇�} + 𝑩𝑵 (7) 

 

where 𝑨 = [
𝟎 𝑰

−𝛚𝟐 −𝟐𝛇𝛚
] and 𝑩 = [

𝟎
𝑰

] . 

 

The state-differential equation, Eq.(7), can be changed to the state-difference equation shown as Eq. (8).12 
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{
𝜼
�̇�}

𝑘+1
= 𝚿 {

𝜼
�̇�}

𝑘
+ 𝚯 (

𝑵𝑘+𝑵𝑘+1

𝟐
) . (8) 

 

Detailed derivation of Eq.(8) is given in the appendix. Rewrite Eq.(8) in partitioned form, resulting in Eq. (9). 

 

{
𝜼
�̇�}

𝑘+1
= [

𝚿𝟏𝟏 𝚿𝟏𝟐

𝚿𝟐𝟏 𝚿𝟐𝟐
] {

𝜼
�̇�}

𝑘
+ [

𝚯𝟏

𝚯𝟐
] (

𝑵𝑘+𝑵𝑘+1

𝟐
) . (9) 

 

Substituting Eq.(2) into Eq.(9) gives Eq. (10), 

 

{
𝜼
�̇�}

𝑘+1
= [

𝚿𝟏𝟏 𝚿𝟏𝟐

𝚿𝟐𝟏 𝚿𝟐𝟐
] {

𝜼
�̇�}

𝑘
+ [

𝚯𝟏

𝚯𝟐
] (

𝑞𝐷

2
𝐂𝑎𝑿𝑘 +

𝑞𝐷

2
𝐃𝑎𝜼𝑘 +

𝑞𝐷

2
𝐂𝑎𝑿𝑘+1 +

𝑞𝐷

2
𝐃𝑎𝜼𝑘+1) (10) 

 

that is, Eqs. (11) and (12). 

 

𝜼𝑘+1 = 𝚿𝟏𝟏𝜼𝑘 + 𝚿𝟏𝟐�̇�𝑘 +
𝑞𝐷

2
𝚯𝟏𝐂𝑎𝑿𝑘 +

𝑞𝐷

2
𝚯𝟏𝐃𝑎𝜼𝑘 +

𝑞𝐷

2
𝚯𝟏𝐂𝑎𝑿𝑘+1 +

𝑞𝐷

2
𝚯𝟏𝐃𝑎𝜼𝑘+1 (11) 

 

�̇�𝑘+1 = 𝚿𝟐𝟏𝜼𝑘 + 𝚿𝟐𝟐�̇�𝑘 +
𝑞𝐷

2
𝚯𝟐𝐂𝑎𝑿𝑘 +

𝑞𝐷

2
𝚯𝟐𝐃𝑎𝜼𝑘 +

𝑞𝐷

2
𝚯𝟐𝐂𝑎𝑿𝑘+1 +

𝑞𝐷

2
𝚯𝟐𝐃𝑎𝜼𝑘+1 . (12) 

 

Rearranging Eqs.(11) and (12) gives Eqs. (13) and (14). 

 

(𝑰 −
𝑞𝐷

2
𝚯𝟏𝐃𝑎) 𝜼𝑘+1 −

𝑞𝐷

2
𝚯𝟏𝐂𝑎𝑿𝑘+1 = 𝚿𝟏𝟏𝜼𝑘 + 𝚿𝟏𝟐�̇�𝑘 +

𝑞𝐷

2
𝚯𝟏𝐂𝑎𝑿𝑘 +

𝑞𝐷

2
𝚯𝟏𝐃𝑎𝜼𝑘 (13) 

 

−
𝑞𝐷

2
𝚯𝟐𝐃𝑎𝜼𝑘+1 +  �̇�𝑘+1 −

𝑞𝐷

2
𝚯𝟐𝐂𝑎𝑿𝑘+1 = 𝚿𝟐𝟏𝜼𝑘 + 𝚿𝟐𝟐�̇�𝑘 +

𝑞𝐷

2
𝚯𝟐𝐂𝑎𝑿𝑘 +

𝑞𝐷

2
𝚯𝟐𝐃𝑎𝜼𝑘 . (14) 

 

Define a state vector, �̃�, at discrete time k as shown in Eq. (15), 

 

�̃�𝒌 ≡ {

𝜼
�̇�
𝑿

}

𝑘

 (15) 

 

then from Eqs.(1), (13), and (14), the state difference equation for an aeroelastic system can be obtained, as shown in Eq. 

(16) 

 

𝑨�̃�𝒌+𝟏 = 𝑩�̃�𝒌 (16) 

 

where 𝐀 = [

𝑰 −
𝑞𝐷

2
𝚯𝟏𝐃𝑎 𝟎 −

𝑞𝐷

2
𝚯𝟏𝐂𝑎

−
𝑞𝐷

2
𝚯𝟐𝐃𝑎 𝑰 −

𝑞𝐷

2
𝚯𝟐𝐂𝑎

𝟎 𝟎 𝐈

] and 𝑩 = [

𝚿𝟏𝟏 +
𝑞𝐷

2
𝚯𝟏𝐃𝑎 𝚿𝟏𝟐

𝑞𝐷

2
𝚯𝟏𝐂𝑎

𝚿𝟐𝟏 +
𝑞𝐷

2
𝚯𝟐𝐃𝑎 𝚿𝟐𝟐

𝑞𝐷

2
𝚯𝟐𝐂𝑎

𝐁𝑎 𝟎 𝐀𝑎

] . 

D. Summary of Procedure 

The procedure for the new flutter speed computation using CFD-based aeroelastic analysis combined with the system 

identification technique is summarized as shown in Fig. 2. This process starts with the FE model and computations of 

natural frequencies and mode shapes. The CFD-based aeroelastic analysis with an arbitrary Mach number and dynamic 

pressure is then carried out in Step 1. Time-history data of the orthonormalized aerodynamic forces obtained from Step 1 

are then non-dimensionalized by 𝑞𝐷 in Step 2. With each element of the orthonormalized displacement vector from Step 

1 as multi-input and each element of the non-dimensional orthonormalized aerodynamic force vectors, 𝑵𝑘 𝒒𝑫⁄ , from Step 

2 as multi-output, the state difference equation for an aerodynamic system can be generated using the system identification 

tool in Step 3. Step 4 combines the known structural dynamic model with the estimated aerodynamic model to form the 

state difference equation for an aeroelastic system. By solving the state difference equation with a different dynamic 

pressure, one can determine the critical dynamic pressure using the 𝑞𝐷 − g and 𝑞𝐷 − 𝑓 plots, which process is similar to 
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classical flutter analysis with lifting surface theory. Repeat Step 1 through Step 4 with the updated dynamic pressure until 

it is converged. A reasonable starting dynamic pressure can be obtained from a linear panel method or test data. 

The governing equation in Eq.(16) is based on discrete time k, and therefore aeroelastic system damping and frequencies 

from Eq.(16) should be converted to continuous time damping and frequencies. The eigenvalues 𝚲𝒋 obtained from Eq.(16) 

can be written as shown in Eq. (17) 

 

𝚲𝒋 = 𝒓𝒋 ± 𝒊𝒔𝒋 𝑗 = 1, 2, … , 𝑛 (17) 

  

where, 𝒓𝒋 and 𝒔𝒋 are the real and imaginary part of the eigenvalues obtained from Eq.(16). Aeroelastic damping and damped 

frequencies, 𝜷𝒋 and 𝝎𝒅𝒋 , in the continuous time domain are obtained as shown in Eqs. (18) and (19).5 

 

𝜷𝒋 =
1

2𝛥𝑇
log𝑒(𝒓𝒋

𝟐 + 𝒔𝒋
𝟐) (18) 

 

𝝎𝒅𝒋 =
1

𝛥𝑇
tan−1 𝒔𝒋

𝒓𝒋
 . (19) 

III. Test Case 

The proposed technique is tested on a cantilevered rectangular wing. This cantilevered rectangular wing with 6-percent 

circular arc cross sections and an aspect ratio of 5.0 was built and tested at NASA LaRC in 19596. The model has a uniform 

chord length of 4.56 inches, a span length of 11.5 inches, and a 0.065-inch-thick aluminum insert covered with flexible 

plastic foam, as shown in Fig. 3. Detailed material properties are shown in Table 1. The shaped lumped weights are used 

to match the local cross-sectional weight distribution of the plastic foam. Therefore, the small lumped weights are used 

near the leading- and trailing-edges and the large lumped weights are used near the mid-chord area.  

The transformation procedure shown in Figs. 3-5 is for demonstration purposes. Fig. 4 depicts the interpolation (RBE3) 

elements between FEM and CFD grids used for the cantilevered rectangular wing. The first three mode shapes obtained 

from MSC/Nastran™ computation are shown in Fig. 5(a). These structural mode shapes were transfered to the surface 

CFD grid using interpolation constraint elements using all the FEM grids as master degrees of freedom and all the CFD 

grids as slave degrees of freedom. Modal analysis used the combined model to obtain the mode shapes on the CFD grid 

locations. The deflection at the CFD grids were used during CFD simulations. The interpolated mode shapes on the CFD 

grids are shown in Fig. 5(b). 

The CFL3D v.6 code with the Euler option was used for solving the 3-D flows on the structured CFD grid. The 

computational domain and surface grid for the rectangular wing is a multi-block (97 x 49 x 41) grid with H-H topology. 

The top half of the grid symmetry plane (above the airfoil) is shown in Fig. 6. A mirror image of the upper block was used 

for the lower block. 

The aeroelastic computations started from a static aerodynamic computation with rigid structure. Fig. 7(a) shows the 

local Mach number distributions for the static solution at Mach 0.714. The restarted file from the static solution was then 

used for the steady-state aeroelastic analysis without any disturbances. After the steady-state aeroelastic analysis had 

converged, a dynamic aeroelastic analysis was carried out with the initial dynamic pressure 𝑞𝐷= 1.0 psi. The 

orthonormalized displacement and aerodynamic force vectors from the dynamic aeroelastic analysis were then used as the 

multi-input and multi-output parameters for the system identification technique to identify the aerodynamic state matrices 

Aa, Ba, Ca, and Da. The orthonormalized aerodynamic force vectors are normalized by the given dynamic pressure before 

input to the system identification technique. The coupled aeroelastic state difference matrix in Eq.(16) was solved by the 

general asymmetric eigenvalue solver with different dynamic pressures. Frequency and damping values were calculated 

using Eqs. (18) and (19). From the dynamic pressure vs. damping (𝑞𝐷 − g) plot, the dynamic pressure at the zero damping 

crossing is obtained. Repeat the dynamic aeroelastic analysis with the critical dynamic pressure obtained from the previous 

analysis until the critical dynamic pressure converges. Two system identification tools, SOCIT and n4sid, were used to 

check the robustness of the estimated unsteady aerodynamic models. SOCIT (System/Observer/Controller Identification 

Toolbox) is a collection of functions that implements a variety of modern system identification techniques. The n4sid is a 

built-in subspace system identification technique in MATLAB. The (𝑞𝐷 − g) and (𝑞𝐷 − f) plots obtained from each 

iteration of dynamic pressure using both system identification tools are shown in Figs. 8-10. Estimated unsteady 

aerodynamic models were slightly different, as shown in these figures, however, there were no difficulties in having 

converged primary unstable modes with both system identication tools. The SOCIT and n4sid converged at the dynamic 

pressures of 1.471 and 1.465 psi and the corresponding frequencies of 33.47 and 33.37 Hz, respectively, in three iterations. 

Both SOCIT and n4sid identify the primary unstable mode correctly. However, often the secondary unstable mode is 
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different, as shown in Fig. 10. The time histories of orthonormalized displacement data with stable and unstable dynamic 

pressures are depicted in Fig. 11.  

The flutter boundaries obtained from the wind-tunnel testing6 for this cantilevered rectangular wing are summarized in 

Table 2. The flutter boundaries at a Mach number of 0.714 using the proposed approach are compared with test data in 

Fig. 12. The computed flutter boundaries at additional Mach numbers, 0.795, 0.851, 0.913, 0.956, and 1.017 are also shown 

in Fig. 12. The local Mach number contour from steady CFD computations at corresponding Mach numbers are given in 

Figs. 7(b) through 7(f). Transonic bucket effect is successfully captured in (𝑀𝑎𝑐ℎ − 𝑞𝐷) curve as shown in Fig. 12(a); 

however, it failed to obtain the correct flutter frequency in the transonic speed regime, as shown in Fig. 12(b). Time 

histories and PSDs of the first three orthonormalized displacements at Mach 0.913 and dynamic pressure of 1.33 psi are 

shown in Fig. 13. In the PSDs, four frequencies, 25 Hz, 36 Hz, 46 Hz, and 90 Hz, are observed in Figs. 13(b), 13(c), and 

13(d). Therefore, the 46-Hz mode was the most dominant mode in the first two orthonormalized displacements, and the 

system identification code estimated this 46-Hz mode as the first flutter mode. It can be concluded that CFL3D with the 

Euler option could not provide the correct orthonormalized displacement and force vectors with the first three structural 

dynamic modes. 

IV. Conclusion 

A new time-domain technique for computing flutter speed and frequency based on computational fluid dynamics (CFD) 

results was presented. The CFL3D v.6 code with the Euler option was used for solving the 3-D flows on the structured 

grid. The presented method utilizes the system identification technique with orthonormalized displacement and 

aerodynamic force vectors to create the aerodynamic system model. The full aeroelastic model is created by coupling the 

estimated aerodynamics model with the known structure dynamic model. The proposed approach is successfully 

implemented to identify the flutter boundaries of a cantilevered rectangular wing model. Computed flutter speeds and 

frequencies are in good match with measured quantities, however, the CFL3D code with the Euler option could not provide 

the correct orthonormalized displacement and force vectors with the first three structural dynamic modes in transonic speed 

regimes. 

In this study, surface grids of the CFD model are included in the structural FE model. These surface CFD grids are 

connected to the nearest structural finite element method grids using interpolation (RBE3) elements. This proposed fitting 

technique between structural finite element and CFD models is successfully used in this study instead of using the Harder 

and Desmarais surface splines. 

Appendix 

 

Integration of Eq.(8) with respect to time yields the state-difference equation shown in Eq. (A.1). 

 

{
𝜼(𝒕𝒇)

�̇�(𝒕𝒇)
} = e𝑨(𝒕𝒇−𝒕𝒊) {

𝜼(𝒕𝒊)
�̇�(𝒕𝒊)

} + ∫ e𝑨(𝒕𝒇−𝜏)𝒕𝒇

𝒕𝒊
𝑩𝑵(𝜏)𝑑𝜏 . (A.1) 

 

Continuous time t in Eq.(A.1) can be changed to discrete time k using the notation shown in Eq. (A.2). 

 

𝜼𝑘+1 ≡ 𝜼(𝒕𝒇) 

𝜼𝑘 ≡ 𝜼(𝒕𝒊) 

𝒕𝒊 ≡ 𝑘𝛥𝑇 (A.2) 

𝒕𝒇 ≡ (𝑘 + 1)𝛥𝑇 

𝛥𝑇 = 𝒕𝒇 − 𝒕𝒊 

𝚿 ≡ e𝑨𝛥𝑇  
 

Thus, Eq.(A.1) is rewritten as shown in Eq. (A.3). 

 

{
𝜼
�̇�}

𝑘+1
= 𝚿 {

𝜼
�̇�}

𝑘
+ ∫ e𝑨{(𝑘+1)𝛥𝑇−𝜏}(𝑘+1)𝛥𝑇

𝑘𝛥𝑇
𝑩𝑵(𝜏)𝑑𝜏 (A.3) 

 

It shoud be noted that Eq.(A.3) is the exact solution of Eq.(7). It is assumed that the orthonormalized aerodynamic force 

vector 𝑵(𝑡) is constant in the small time interval 𝑘𝛥𝑇 ≤ 𝑡 ≤ (𝑘 + 1)𝛥𝑇. In this interval, the orthonormalized aerodynamic 
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force vector is assumed to be equal to average value, 
𝑵𝑘+𝑵𝑘+1

𝟐
. Therefore, the integration term in Eq.(A.3) can be 

approximated as shown in Eq. (A.4). 

 

∫ e𝑨{(𝑘+1)𝛥𝑇−𝜏}(𝑘+1)𝛥𝑇

𝑘𝛥𝑇
𝑩𝑵(𝜏)𝑑𝜏 ≈ ∫ e𝑨{(𝑘+1)𝛥𝑇−𝜏}(𝑘+1)𝛥𝑇

𝑘𝛥𝑇
𝑑𝜏𝑩 (

𝑵𝑘+𝑵𝑘+1

𝟐
) . (A.4) 

 

If the variable 𝜏 in Eq.(A.4) is change to 𝜎 with Eq. (A.5); 

 

𝜎 = 𝜏 −  𝑘𝛥𝑇 . (A.5) 

 

then the integration term in Eq.(A.4) becomes Eq. (A.6). 

 

∫ e𝑨{(𝑘+1)𝛥𝑇−𝜏}(𝑘+1)𝛥𝑇

𝑘𝛥𝑇
𝑑𝜏 = ∫ e𝑨(𝛥𝑇−𝜎)𝛥𝑇

0
𝑑𝜎 ≡ 𝚪 . (A.6) 

 

Therefore, the state-difference equation for the state-differential equation in Eq.(7) can be written as Eq. (A.7). 

 

{
𝜼
�̇�}

𝑘+1
= 𝚿 {

𝜼
�̇�}

𝑘
+ 𝚪𝐁 (

𝑵𝑘+𝑵𝑘+1

𝟐
) = 𝚿 {

𝜼
�̇�}

𝑘
+ 𝚯 (

𝑵𝑘+𝑵𝑘+1

𝟐
) . (A.7) 
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Tables 

 

Table 1. Detailed material properties of the cantilevered rectangular wing. 

 

Properties Number 

Young’s modulus, E, of aluminum insert 9207766 psi 

Shear modulus, G, of aluminum insert 3836570 psi 

Density of aluminum insert 0.1 lb/in^3 

Total weight 0.3806 lb 

Xcg 2.28 inch 

Ycg 5.75 inch 

Thickness of aluminum insert 0.065 inch 

 

 

Table 2. Flutter boundary of the cantilevered rectangular wing. 

 

Mach number Dynamic pressure, psi Frequency, Hz 

0.714 1.450377 33.80000 

0.795 1.261161 31.40127 

0.814 1.310468 31.59226 

0.836 1.198658 30.49409 

0.851 1.231993 29.39592 

0.905 1.191714 24.70085 

0.907 1.236854 25.19423 

0.913 1.122267 24.00057 

0.923 1.174352 28.20226 

0.927 1.133378 24.60535 

0.956 1.454224 30.00071 

1.017 1.732707 33.6931 
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Figures 

 

 
 

Figure 1. Definition of the FEM and CFD grids used in this study. 

 

 

 

 
 

Figure 2. Flow chart showing time-domain CFD-based flutter speed computation. 
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Figure 3. Structural model of the cantilevered rectangular wing. 

 

 

 

 

 

 

 
 

Figure 4. FEM and CFD grids connection using RBE3 elements. 
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Figure 5. Mode shapes of the cantilevered rectangular wing on structural and aerodynamic models. 

 

 

 

Figure 6. A CFD grid for CFL3D computations based on an Euler grid. 
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Figure 7. Local Mach number contour from steady CFD computations. 
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Figure 8. (𝒒𝑫 − g) and (𝒒𝑫 − f) plots for initial qD = 1.0 psi. 
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Figure 9. (𝒒𝑫 − g) and (𝒒𝑫 − f) plots for SOCIT (qD = 1.20 psi) and n4sid (qD = 1.30 psi). 
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Figure 10. (𝒒𝑫 − g) and (𝒒𝑫 − f) plots for SOCIT (qD = 1.40 psi) and n4sid (qD = 1.45 psi). 
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Figure 11. Time histories of orthonormalized displacement with dynamic pressures of 1.45 and 1.46 psi. 
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Figure 12. Flutter boundary of the cantilevered rectangular wing. 
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Figure 13. Time histories and PSDs of the first three orthonormalized displacements. 

 

 

 


